

Mathias Kläui	TREES Workshop, Trieste 5.12.2018
2. Skyrmion stability	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	56 52 48 44 44 44 48 52 56
600 (m/ya) 100 200	 Multiscale simulations¹: Magnetic field annihilates skyrmion at H_{del}: depends on lattice → correct lattice constant needed² For continuous model, energy
100 - 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =	 barrier² → "topological protection" does NOT exist!³ Combination of DMI and frustrat- ion can enhance stability (H. Yuan, MK et al., PRB 96, 134415 (2017)
¹ A. De Lucia et al., Phys. Rev. B 94 , 184415 (2016); ² A. de Lucia et al., Phys. Rev. B 96 , 020405(R) (2017); ³ /	F. Büttner et al., Sci. Rep. 8 , 4464 (2017)

TREES Workshop, Trieste 5.12.2018

7. Final Thoughts

Mathias Kläui

My (not necessarily working) crystal ball predicts, that there will be in 10 years still a need for fs AND ps (magnetic) real space imaging and k-space diffraction because the intrinsic magnetization dynamics is in the GHz-THz range.

